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ABSTRACT

We consider the problem of evaluating a function /(z, y) (z E BRn, y E §?') using two

processors P and P2, assuming that processor P (respectively, P2) has access to input x

(respectively, y) and the functional form of f. We establish a new general lower bound

on the communication complexity (i.e., the minimum number of real-valued messages that

have to be exchanged). We then apply our result to the case where f(z, y) is defined as a

root z of a polynomial equation _ (xi + y/)z' = 0 and obtain a lower bound of n. This

is in contrast to the fl(1) lower bound obtained by applying earlier results of Abelson.
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1 Introduction

In a computer network where a set of processors wish to perform some computational

task, communication can sometimes become a bottleneck, especially when communication

resources are scarce. This is particularly so, in the area of parallel and VLSI computation

( ,.,Uz where communication issues have been studied extensively. In

.-. such contexts, it is desirable to design algorithms that require as little information exchange

as possible. Problems of minimizing the amount of exchanged information also arise in

the context of decentralized signal processing, where each local processor collects some

partial data to be processed collectively. In this paper, we study the communication

complexity'-(i.e., the minimum possible amount of information exchange) of some particular

computational tasks.

Generally speaking, communication complexity depends both on the topology of a com-

puter network and on the nature of the computational task under consideration. In this

paper, we ignore the topological issues, by assuming that there are only two processors, say

PlI and P2. We use the following model of communications introduced by Abelson ([A 801).
Let there be~given a continuously differentiable function f : D, x D. f-+ R, where D. and D.

are some open subsets of R' and R' respectively. It is assumed that processor P (respec-
tively, P2 ) has access to a vector z E D, (respectively, y E Dy) and the formula defining f.
The processors P1, P 2 proceed to evaluate f(z, y) by exchanging messages, using a two-way

communication protocol, in which messages can be sent in both directions. Let us use ;r

to denote a two-way communication protocol and r(7r) to denote the number of messages

exchanged in ir. In addition, let T1 ., 2 (respectively, T2 . 1 ) denote the set of indices i for
which the i-th message is sent from P1 to P2 (respectively, from P2 to PI). The protocol

7r consists of r(7r) functions M, . . . ,,() : D, x D. '-4 i, with mi(z, Y) being interpreted

as the value of the i-th message. These message functions must depend on the inputs z

and y in a very special way. More specifically, for each i, there must exist some real-valued

function ,N such that , ' - _

Mi(z,Y) = rN (ZmI(Z, ),-..,mi- 1 (zJ)), V(z, y) E D. x D., if i E T. 2 , (1.1)

or

mri(z, V) = iN (y, mi(x, y), • , mi.T-i(y,)), V(z, y) E D. x D,,, ifi ET 2. 1. (1.2)

Furthermore, we require that either:

a) There exists a function h such that

f(,y) = h(z,ml(x, y),...,mn(,)(zV)), V(z,p)E . xD., (1.3)

(this corresponds to the case where processor P performs the final computation) or,

==m mmmom nummu n ill mm nmnml In n R i 1



b) There exists a function h such that

f(zy) = h (s),mi (,- ),... ,m'()(X,Y)), V(x,y) E D, x Dy, (1.4)

which corresponds to the case where processor P2 computes the final result.

Typically, some smoothness constraints are imposed on the functions in1 , iN and h.
For example, [A 80] considers the class of two-way communication protocols (denoted by

l 2 (f; D. x D,)) in which the functions iN, Yh and h are twice continuously differentiable.
In this paper, we consider a more general class of protocols in which the message functions
iN, rk are once continuously differentiable and the final evaluation function h is continuous.
We denote this class of two-way protocols for computing f by n'[i(f; D. x D.). We define
the two-way communication complexity of computing f with protocols in n2(f; D. x Dv)
as

C2(f; D. x D.) inf r(ir).
irEfl 2 (';D.xDy)

We define the quantity C1(f; D, x D,) similarly. Notice that 1[2(f; D, x D.) c fli(f; D, x
Do). Thus, C2(f ;D. x D,,) >_ Ci(f;D. x D.). As discussed in [IL 89], fij(f;D, x D,) is,
in some sense, the most general class of protocols for which the notion of communication
complexity is well defined for problems involving continuous variables. [L 89] also contains
a discussion of how to implement in practice the "continuous" communication protocols
whose messages are real numbers by using binary strings.

The most fundamental work on two-way communication complexity is due to Abelson
([A 80]) who established a general lower bound for C2(f; D, x D.). In particular, let
f : D. x D. '-4 W be a twice continuously differentiable function and let H.V(f) denote the
matrix (of size rn x n) whose (ij)-th entry is given by - The following result was
proved in [A 80]:

Theorem 1.1 For any p E D, -, vi we have

C2(f; D, x D.) ? rank (H,(f )) (p).

Notice that Theorem 1.1 only takes into account the second order derivatives of f and
ignores the derivatives of other orders. Thus, this bound should not be expected to be
tight, as was shown in [LT 891.

In this paper, we derive a new general lower bound which is different from Theorem I.I.
Our result (Theorem 2.1) makes use of the first order derivatives of f and is fairly intuitive,
but surprisingly difficult to prove. Our work was motivated from the problem of distributed
computation of a root of a polynomial equation of degree n - 1. We apply our result to this

2



problem and obtain a lower bound of n, in contrast to the 0(1) lower bound obtained from
Abelson's result. In [L 89], a similar f2(n) lower bound is established for the same problem,
but under a more restricted class of communication protocols in which the functions rnj, Mi
(i = 1,... ,r(7r).) are assumed to be polynomials. The proof in [L 89] makes use of a result
from dimension theory and is algebraic in nature, in contrast to the analytic approach in
the proof given here.

In related work ([LT 89]), Abelson's result has been extended by considering more re-
stricted class of communication protocols; in particular, some improved lower bounds on
one-way and two-way communication complexity have been obtained by exploiting the al-
gebraic structure present in certain problems. Communication complexity has also been
studied under discrete communication models (see e.g. [MS 82], [PS 82], [PT 82], [Y 791).
In these models, the messages are no longer real numbers, but binary strings. A substan-
tial amount of research has been devoted to the study of the communication complexity of
selected combinatorial problems ([AU 83], [PE 86], [U 84]). A different model is introduced
in [TL 87] for the problem of approximately minimizing the sum of two convex functions
under the assumption that each convex function is known to a different processor.

The rest of this paper is organized as follows. In Section 2, we prove our main result
(Theorem 2.1). In Section 3, we apply the result of Section 2 to establish a lower bound of
n for the problem of computing a root of a polynomial equation of degree n - 1. In Section
4, we compare our result with that of Abelson's. Finally, the appendix contains certain

results from multidimensional calculus that are needed in Section 2.

2 Main Result

Let f : D. x D. - be a continuously differentiable function, where D. and Dy are some

open subsets of R,' and Rn, respectively. We use the notation V.f(z, V) and Vyf(z, y) to
denote the m-dimensional (respectively, n-dimensional) vector whose components are the
partial derivatives of f with respect to the components of z (respectively, y,). Also, for any
set S C D., we use [Vvf(x, y); z E S] to denote the subspace of W" spanned by the vectors
Vf(z, y), x E S. Finally, for any set S C Dy, [Vdf(Z, y); y E S] is similary defined.

Assumption 2.1 For any j E D., we let

S (y) = { S C D. I f(S, y) contains an open interval }.3

(For any z E D2 , S(z) is sirnilarly defined.)

'The notation f(S, V) stands for the set {f(z, y) I z E S). Similar notation will be used later without
further comment.
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a) For any y E D. and any nonempty open set S C D., we have S E S(y).

b) For any x E D. and any nonempty open set S C D., we have S E S(y).

c) For some nonnegative integer hi, we have

dim[Vyf(z,,y); z E S] _ n, Vy E Dy, VS E S(y). (2.1)

d) For some nonnegative integer ml, we have

dim[V~f(z, y); y r S) _ inf, Vz E D., VS E S(x). (2.2)

Our main result is the following:

Theorem 2.1 There holds

Ci(f; D, x D.) > min(nf,mj}. (2.3)

Proof: Let r = C,(f; D2 x D.). We first prove that it is sufficient to show the lower bound

(2.3) under the additional assumption

r = min C1(f;z x ), (2.4)

where the minimum is taken over all nonempty open subsets D., D of D., Dy, respectively.

In fact, suppose that we have already shown that Theorem 2.1 is true under the assumption

(2.4). Let us now show (2.3) when Eq. (2.4) does not hold. In this case, there exists some

r' < r and some open subsets bz x b. of D, x D. such that

r' = C(f; b x b.) = min C(f;-V. x D.).
D,,D,

where the minimum is taken over all nonempty open subsets D,, D. of b., b.. Thus, Eq.
(2.4) holds with r, D. and D. replaced by r', b. and b. respectively. Since any nonempty
open subset of b. (respectively, b,) is also a nonempty subset of D. (respectivley, D.), we

see that Assumption 2.1 remains valid (with the same constants n, m) when D,, D. are

replaced by b., bV. Therefore, Theorem 2.1 applies and shows that r > r' > min{n, i),

which shows that Theorem 2.1 holds regardless of assumption (2.4).

In the rest of the proof, we will assume that (2.4) holds. Let us consider a protocol that

uses exactly r messages, described by (cf. Section 1)

m4(z,y) = r4(z,mn,(z,y),..., $_4- 1 (z,y)), V(z, y) E D, x D., if i E TI-., (2.5)

rm(z,v) = rh(yrnxy),...,ni_.(z,y)), V(x,y)EDxD,, ifiET 2 . 1 , (2.6)
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where each m and , is a continuously differentiable function. Without loss of generality,

we assume that the final evaluation of f is performed by processor PI. Thus, there exists

some continuous function h such that

f(z,V) = h(z, mi(z,y),...,m,(z,y)), V(x, y) E D,, x D.. (2.7)

We introduce some notations. Let u = (X, y) and let D = D= x D.. Let also m(u) =

(mi(u),...,m,.(u)) and let Vm(u) be the (m + n) x r matrix whose i-th column is the
gradient vector Vmn(u),s = 1,..., r. Define

k = max rank [Vm(u)]. (2.8)
uED

Lemma 2.1 k = r.

Proof: We show this by contradiction. Suppose that r > k. Consider the continuously
differentiable mapping m : D #-# 0?, where D = D. x D. is an open set and m(u) =
(mi(u),. . . , m,(u)). We claim that Vmi(z, y) is not identically zero on the set D. Indeed,
if this was the case, then mi (, Y) would be equal to a constant on the set D, and the first

message in the protocol would be redundant. Thus, there would exist a protocol that uses

r - 1 messages, contradicting the definition of r. We can therefore apply Theorem A.2 in
the appendix (with the correspondence m +- F, D - Q, r *- a) to conclude that there
exists some positive integer i and some continuously differentiable function g such that

mi+1(u) = g (mi(u),.. ., m,(u)), Vu E (2.9)

where D is some nonempty open subset of D. By taking a suVbset of D if necessary, we can

assume that D is of the product form U. x D, where D. and D. are some open subsets of
D. and D. respectively. Then, Eq. (2.9) would imply that the (i + 1)-st message mi+i(z, y)

is redundant for computing f over D x D,, which contradicts the definition of r (cf. Eq.

(2.4)). Q.E.D.

Loosely speaking, Lemma 2.1 tells us that each message in an optimal protocol has
to contain some "new information' and therefore the corresponding gradient vectors have
to be linearly independent. Before we go on to the next lemma, we introduce some more

notations. Let D. C D., VV C D. be nonempty open sets such that Vrn(u) has full rank

for every u E D, x D. (Such sets can be taken nonempty due to Lemma 2.1, and open

due to the continuity of Vm(u).) We use D as a short notation for D5. x D." Furthermore,
for any vector c = (Cl,. .. , c) E R', we let c' = (Ci, C2, ... ,c). Let also r1 (respectively,

r2) be the number of messages sent by processor P (respectively, P 2 ). In addition, we use

the notation [Vgmj(z, y); i E T1 . 2] to denote the m x ri matrix whose column vectors are

5



V.j(zx) = (z~) ... ax "(X)!,)), " E Ti.. 2 . The nxr 2 matrix [Vrnmi(z,y);iE T 2-. 1]

is defined similarly. As a refinement of Lemma 2.1, we have the following:

L.emma 2.2 For any (z, y) E V, there hold8

rank[V.&i (x,c' 1-);i E T-. 2] = rl,

and
rank[Vv,,(y,c'-);i E T2. 1] = r2,

where c = m(x, y).

Proof: By Lemma 2.1, we see that the matrix Vm(z, y) has full rank (and its rank is equal
to r) over the set 5. Notice that by possibly reindexing the columns of the matrix Vm(z, y)
we can write Vm(x, y) in the form

[ Al A 1 2 ]

A21 A22

where A11 = [Vgin(z,y);i E T. 2 ] and A22 = [Vyrm(z,y);i E T2- 1]. From Eqs. (2.5)-

(2.6), it is easily seen that for each i - T2.1, there exists a continuously differentiable
function M such that

,,i(X, Y) = M, (Y, {m,(z, Y): I < i, I E TI-2.}), i E T2-1. (2.10)

(In other words, a message sent by processor P2 can be expressed as a function of y and
the messages already received.) By differentiating Eq. (2.10), we obtain

V.rr4Cx,9) = 1 dj(x,9)Vzrnj(z,9), i E T2-1 (2.11)

IET-2

where each di(z, y) is a suitable scalar. Thus,

V.mj(z, y) E span (V.mi,(z,v);i E T2.), V(z, ) E , Vi E T2. 1.

This means that the columns of A12 belong to the span of the columns of All and therefore

rank[ Al A 2 ]rank(All)5r.

Similarly, one can show that

rank[ A 2 1 A 22 ] =rank (A 2 2 ) _< r2 .

6



On the other hand,

= rl + f2

> rank (All) + rank (A 22 )

= rank [All A12  + +rank [A 2 1  A22 ]
> rank [All A 1 2 ]

A 21 A2 2

= ranklVm(x,V)

= r, V(x, y) ED.

This implies that
rank(All) = rank[V~m,(x, y);i E T-. 21 = rl

and
rank(A 22) = rankVVm,(x, y);i E T2-1] = ,

To show that rank[V,.N(x, c- 1); i E TI- 2 1 = r, we differentiate Eq. (2.5) to obtain

i-1

V. .m(, Y) = V, v,(X, c '-1 ) + arN (X, C'1 V.ml(z, y), if i E T.- 2 , (2.12)
/=I

where c = m(z, y) and (x, y) E D. Using Eq. (2.11), we see that E= a, (x, c'-)Vfml(z, y)

can be written as a linear combination of the vectors {Vmj(z,y); 1 < i - 1, 1 E T1 -.2}.
Therefore, Eq. (2.12) shows that

[Vr"t(z, c'-*); i E TI- 2 ] = IVzm;(x, y); i E TI-. 2 ]C = AlIC,

where C is some upper triangular matrix whose diagonal entries are equal to 1. Hence
rank[Vrk(x, c-'); i E TI. 2] = rank(All) = rl. The equality

rankLV.v6i(y, c'); i E T2...1] = T

can be shown by a similar argument. Q.E.D.

Let us fix some more notations. For any vector c = (c,... , c') E W, we let

S(c) = {(x,) ED. x , Im(zy)= ,i=1,...,},

S,(c) = ( E D, I(,c'') z E,, vD I T... }, (2.13)

S. (c) = { E Dl I 6(y,c' - ') = ci,, Vi E T2 .. },

R = { (ml(, y),...,,-(z,y)) I (z, y) E D, x Dy }.

7



Lemma 2.3 For anyi c E R, we have

S(c) = S,(c) x S,(c). (2.14)

Proof: We have, using the definition (2.13) and Eqs. (2.5)-(2.6),

S(c) = (z,y) E D. x D, YNi(x,c' - ) = ci, ViE T1.. 2 ,

, (y, C-1) = c,, v E T2.. }
= S. ) x s,().

Q.E.D.

We now fix some (z', y*) E D and let c" = m(x*,y). Consider the mapping F with

components

F,(z,c) = r (x,c' 1) - ci, Vc E R, x E D,, i E T 1- 2 .

Thus, F(x*,c ° ) = 0, for all i E T.. 2 . Moreover, it follows from Lemma 2.2 that the matrix

[V.F(z',c') has full rank. It is now clear that we are in a position to apply Theorem A.3
in the appendix (with the correspondence u -- z and v " c) to conclude that there exist

an open subset U, of W' containing c', an open subset D of D. containing z" such that

S.(c) n b. is nonempty and connected for all c E U1 . Following a symmetrical argument,
we see that there exist open subsets U2 C R" and b. c D. such that c' E U2 , y* E Df,

and s, (c) nf b is nonempty and connected for all c E U2 . Let U = U1 n U2. Clearly, U is
nonempty since c" E U. In light of Lemma 2.3, we see that for all c E U,

(s (S(c)flb.) x~ (s. (c)fnb,),

and the set §(c) is nonempty and connected. Let us use §(c) and §,(c) to denote the sets
S.(c) f b3 and S,(c) bl, respectively.

We now proceed to the main part of the proof. Since we have assumed that the final

result in evaluated by processor P, it follows that the last message rr,(z, ) must have been

sent by processor P2 . (Otherwise, processor P would be able to evaluate f(z, V) on the

basis of mi(z,y),... ,m,-(z,V), and we would have a protocol with r - 1 messages, thus

contradicting Eq. (2.4).) Suppose that there exists some function tv : U -4 R such that

h(z,c) = w(c), Vc E U, Vz E §, (c), (2.15)

where h is the function given by Eq. (2.7). We claim that w is a continuous function of c

in U. In fact, let c be an arbitrary vector in U and let {c, E U;i = 1,2,...) be a sequence

8



of " ectors converging to c. By Theorem A.3 in the appendix, we can pick a convergent

sequence of vectors {z, E .(cj);i = 1,2,. .. } such that lirn-., xi = z for some z E b,. By

using Eq. (2.15) and the continuity of h, we see that

lir w(cj) r lim h(z,,c,) = h(z,c) = w(c),

i-o 1-o

which implies that w is continuous on U. Since for any (x,y) E m-'(U) (b, x b.) we
have m(x, y) E U, Eq. (2.15) yields

f(z, v) = h(x, m(z, y)) = w(m(, y)), V(z, y) E b. x b,.

Thus, f can be evaluated on the basis of rn(z, y) alone over the set m-i(U) k (b x b,,)
and this can be done by processor P2 before sending the last message. Thus, Eq. (2.15)

leads to a protocol with r - 1 messages for computing f over m- '(U) n (b2 x L),). This

will contradict Eq. (2.4) once we show that m-(U) n (b, x b) is a nonempty open set.

To this effect, we notice that S(c) is nonempty and that

c : m-1'(u)N (b, x b,). Vc E U,

from which it follows that m-(u) n (b, x b,) is nonempty. Furthermore, m-(U) is

open since it is the inverse image of the open set U under a continuous mapping. Thus,

m-(U)l (b. x b,) is open, since b., x bV is open by construction.

Since no function w can have the property (2.15), we conclude that there exists some

E U such that h(z, c) is a nonconstant function of z on the set . Since h is a continuous

function and the set S( ) is nonempty and connected, we see that h (s.(8m, ) must contain

an open interval in R. Using the fact that f(z, y) = h(x,E) for all (z, y) E S x(&) x , we

have ,'(', )v)= A (.2( ), ) , Vy E ,()

Therefore, f (SV(a),y) contains an open interval, or equivalently, ,( ) E S(y) for all y E

,#) (cf. Definition 2.1). Let us fix some j E S,(E). Then, using the definition of n! (Eq.

(2.1)), there exist z',..., "f E §.( ) such that V,f(zlIJ),...,V,f(z"f,) are linearly
independent. Meanwhile, we observe that

§v (Z) = { y E b, I ,N,(y, ' = i, Vi E T=_.. I

and that, for any fixed z E §:( ), f(r, y) = h(z,a) is a constant function of y on the set
. Moreover, by Lemma 2.2, we ha-.

rank[V~vN(, -');i E T2 .. ,j] = r2, Vy e bv. (2.16)

• . • • .. . . i I I I I I I I9



Thus, we are now in a position to apply Theorem A.4 (with the correspondence A .

F * {r(y,- 1 ) - ci;i E T2 . 1}) and conclude that

Vf(z, P) E span {V~ik(p , i E T2 .1}, Vz S ().

Since each zi E , we see that Vtf(z, ) is in the span of the vectors {Vthi(-, i E
T 2-. 1 }, for j = 1,... , n. Using the fact that the vectors VVf(zxi, j) are linearly independent,
we conclude that r > r2 ! nf ! nin{m1 ,,nf} which is the desired result, under the

assumption that processor PI performs the final evaluation of f. A similar argument yields

r > ri ! n! min(inm, n!} for the case where processor P2 performs the final evaluation

of f. Q.E.D.

As a remark, we notice that in the preceding proof we have actually shown that r2 2! nf

in the case where processor PI performs the final computation and r, _> mf if processor P2

performs the final computation. Therefore, if Ci(f; D, x D,) = min{mf , n1 ), then either

ri = m! and r2 = 0, or, r, = 0 and r2 = ny. This means that our lower bound is tight only
for those problems for which one-way communication protocols are optimal.

Corolary 2.1 If Ci(f; Dx D.) = rnin{n, m}, then any optimal communication protocol
for computing f over D_ x D. is necessarily an one-way communication protocol.

3 Computing a Root of a Polynomial

We now apply Theorem 2.1 to the distributed computation of a root of a polynomial. We

shall demonstrate that in this case Abelson's result is far from being optimal.

Let z = (Xo,.. .,z - .. 1 ) E Rn andy = (O,.. .,y._I-) E Rn; let F(z;z, y) be the polyno-

mial in the scalar variable z defined by

n-I

F(z; z,y) = (Xi + YO)z4, (3.1)

Processor PI (respectively, P2 ) has access to the vector z (respectively, y) and the objective

is the computation of a particular root of the polynomial F(z; z, y). In order for the problem
to be wel-defined, we must specify which one of the n - I roots of the polynomial is to

be computed. This is accomplished as follows. We fix some (z*, y') E R 2 such that one
of the roots (call it z*) of the polynomial F(z; x*, y*) is real and simple. This root will
vary continuously and will remain a real and simple root as z and V vary in some open set

containing zx, y". We formulate this discussion in the following result.
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Lemma 3.1 Suppose that z" is a real and simple root of F(z; x,y'). Then, there exist open

sets Dr, Dy C . such that (X ,y) E D, x D. and an infinitely differentiable function

f : D= x DY - R such that f(x',y*) = z' and

F(f(, y);x,y) = 0, V(x,y) E D. x D.. (3.2)

Proof: Notice that K (Z; xz, y) # 0, since z' is a simple root. By the implicit function

theorem ([S 65, page 41]), we see that there exists an open set D containing (X, y*) and an

infinitely differentiable function 9 : D '- R such that 9(X, y*) = z* and F(g(x, y); z, y) = 0

for all (z,y) E D. Now by the continuity of " (z; x, y) .=,,,) at the point ( ,*), there

exist open sets D,, D. such that (*, y*) E D. x D. C D and such that J (Z; Y
0 for all (z, y) E D, x D.. As a result, g(x, Y) is a simple root of the polynomial equation

F(z; x, y) = 0 for all (x, y) E D. x D.. Let f be the restriction of g on D. x Dy. Clearly, f
has all the desired properties. Q.E.D.

By Lemma 3.1, we see that f(z, y) is a root of F(z; z, i) and is a well-defined smooth map

from D, x D. to R. We are interested in the communication complexity C1 (f; D, x D.)

of computing f(x, y) as (z, y) varies in the set D. x D.. We start by pointing out that

Abelson's lower bound (Theorem 1.1) is rather weak.

Leimna 3.2 The rank of the matrix H.I(f), whose (i,j)-th entry is equal to 2 is at
most 3, for any (x, y) E D2 x Dy.

Proof: We have

n-I

Z" (z, + y,)(f'(z, y))' = 0, V(x, y) E D, x Dt.
i=0

We differentiate both sides of the above equation,with respect to yin, to obtain

n-I

Zi(z, + IN)Uf(z')' 1 Of (z, + (f (x, y))' = 0, V(z, y) E D. x D., 0 <m < n-i1.811m

(3.3)
We differentiate Eq. (3.3) further, with respect to z5 , to obtain

n-I af(z, y) af(z, V) n-I
,=~i(i - 1)(x, +,)(f(+,y))' 2  8 z  O( m - i + c'f, ')) ('

+M(z,, ) I f (Z' Y) + 1(x ( ))'- 1 8f (z, 0.) _O. (3.4)

Since f(z, V) is a simple root, it follows that _ i(x, +i/)(f(z, a))'i- # 0. Equation (3.4)

shows that 8L1C.zk is of the form uI(l)vI(m) + u2 (l)v2(m) + us(1)v3(m), where u,(l),vj(m)
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are some real numbers depending on z, y. Therefore the rank of the matrix H2'(f) can be

at most 3, for any point (X, V) E D2 x D.. Q.E.D.

We now illustrate the power of our general results, by deriving a lower bound that

matches the obvious upper bound.

Theorem 3.1 Let D., Dy be a8 in Lemma 8.1. Then, C1(f(z, y);D, x D) =n.

Proof: The upper bound C,(f; D, x D,) < n is obvious, so we concentrate on the proof of
the lower bound. To this effect, we will employ Theorem 2.1 and it suffices to verify that

Assumption 2.1 holds with n! = m= = n. Since the roots of a polynomial equation cannot

remain constant when the coefficients vary over an open set, it follows that the continuous

function f (x, y) given by Lemma 3.1 satisfies parts (a) and (b) of Assumption 2.1. Now we

fix some y E D. and some S E S (y), that is, S C D. and f(S, y) contains an open interval.

Let Cl,... ,c, be some distinct real numbers in f(S, y) and X',. . . , z' E S such that

(z', y) = c i, n=,...-,. (3.5)

Let z' be the j-th coordinate of z. Using Eq. (3.3), we see that

,

ajVyf (X" Y) = '(3.6)
where aj = EX!-' j(z + yi)c- 1 . If we form a matrix whose colums are the vectors

(1,c,...,c- 1 ), i = 1,...,n, this matrix is a Vandermonde matrix and is nonsingular,

because the values c1,..., c, are chosen to be distinct. Then, Eq. (3.6) implies that the
vectors Vf(z', Y), i = 1,...,n, are linearly independent. This proves that n, = n. The

proof that m! = n is similar. Q.E.D.

As a remark, we point out that Theorem 3.1 is in some sense the strongest result

possible. The only assumptions we used in showing Theorem 3.1 are that a) the message

functions are continuously differentiable; b) the final evaluation function is a continuous

function; c) the protocol computes a root of a polynomial on some open set. As discussed in

[L 89], assumption a) is necessary since its removal could lead to unreasonable conclusions.

Assumption b) is basic and natural since the function to be computed, i.e., a particular

real simple root of some polynomial, is continuous, while assumption c) is minimal. Finally,

we note that no truly two-way communication protocol can be optimal. In other words,

if each processor transmits at least one message, then at least n + I messages have to be

exchanged. This is a simple consequence of Corollary 2.1 of Section 2.
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4 Comparison With Abelson's Bound

In the previous section, we have seen that Theorem 2.1 can yield a much better bound than
Abelson's result (Theorem 1.1). However, it is not true, as we shall see next, that Theorem
2.1 always provides a stronger lower bound. The reason is, loosely speaking, that our result

only places a constraint on the minimum number of messages that has to to be sent by a
single processor, while Abelson's result is a bound on the total number of messages sent

by both processors. As pointed out at the end of Section 2, any two-way communication
protocol that attains the lower bound in Theorem 2.1 is necessarily an one-way protocol.
Notice that our result makes use of information about the first order derivatives of function
f. This is in contrast to Abelson's result which uses only the second order derivatives of f.
In what follows, we provide an example where Abelson's bound is more effective than our
bound.

Example: Let f'(z, y) = xTQy, where Q is some m x n matrix and z E It ' and y E R'. By
Theorem 1.1, we see that C2 (f; R"' x Rn) rank(Q). Using the singular value decomposi-
tion of Q, one can construct a protocol that uses exactly rank(Q) messages (see [LT 89)).

Therefore, we conclude that C2(f; Rm  x = rank(Q). Next we apply Theorem 2.1 to f.
To this effect, we need to find out of the values m! and n!.

Suppose that rank(Q) = r > 0. Let D., D. be some connected open subsets of R'

and Rn respectively. We assume that 0 V D. and 0 i D. in which case f(z, y) is non-

constant as z or y vary in an open subset of D. or D., respectivly. Thus, parts (a) and

(b) of Assumption 2.1 are satisfied. We now show that Assumption 2.1 can only hold with

min{mf, nj} < 2. By the singular value decomposition, there exist two linearly independent

families of vectors uj,... ,u, in Rn and v,... ,v, in R1, such that

Q = uivT + U2 V + "'" + UrvT (4.1)

It follows that zTQy = .=(uTz)(ly). Since r > 0, there exists some point (zo, y0) E

D. x D. such that 4oQyo # 0. Hence, we can, without loss of generality, assume that

(uTzo)(vTyo) $ 0. Let S = {z E D. I uT z = uTzo, 1 <_i < r - 1). Clearly, S is nonempty

since to E S. We claim that if r > I then f (S, yo) contains an open interval. In fact,

equation (4.1) shows that

zT QYO = ZDuTw)(ViTYO)
i=1

= Z(ujZO)(VTvO) + (UTZ)(VTVD), VZ S. (4.2)

Since u, is linearly independent from ut,... , u,-1, we see that ux is a nonconstant function

of z on S. Using the fact that vr Yo 0 0 and Eq. (4.2), we see that zTq1  is also a
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nonconstant function of x on the set S. Note that S is connected because D, is assumed
to be connected. It follows that f(S, y0) contains an open interval. To see that n! < 2, we
notice that

r-1

V~f (x, yo) = Z(JzO)vi + (u7'z)v,, Vz E S.
i=1

Hence, dim[V f(x, yO);z E S) <_ 2. Thus, Assumption 2.1 can only hold with n! < 2. The

relation my < 2 can be established in a symetrical fashion. As a result, we have shown that
min{m!,nf} <2.

Thus, for the problem f(z, y) = xTQy, Theorem 2.1 provides a lower bound of at most
2 as opposed to the lower bound of rank(Q) provided by Abelson's result. Hence, Theorem
2.1 can be quite far from optimal in general. Furthermore, the above example and the
results of Section 3 demonstrate that Theorems 1.1 and 2.1 are incomparable.

A Appendix

This appendix contains some results concerning multivariable functions that are used in

Section 2.

Let F : U x V '-* N' be a continuously differentiable mapping, where U and V are
open subsets of R' and Rt respectively. We assume that r > a. Let (u* , v*) E U x V be
such that rank[VuF(u*, v*)] = 8. Then, the matrix VFu(u*, v*) has 8 linearly independent
rows and we can find a set J c (1,. . . , r} of indices, of cardinality a, such that the vectors
(S , u , -),., 0 u , v*)), i E J are linearly independent. We define the projection

II : R' --+ R-' by letting rl(u) be the vector with coordinates u,, i gl J. We have the

following lemma.

Lemma A.1 There ezists a connected open subset R of U x V, and a connected open set
S C t", and a continuously differentiable function g :S 1- R ouch that (u*,v*) E R,

S = { (F(u, v),fl(u),v) I (u,v) ER ,

and such that
(u, v)= g (F(u,v), n(u), v), V(u, v)E R. (A.1)

Proof: Consider the mapping q : U x V '-. 1R+9 defined by q(u, v) = (F(u, v), n(u), v). We

claim that Vq(u, v*) has full rank. To see this, let us permute the rows of Vq(u', v) so
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that the last r + t - a rows correspond to the partial derivatives with respect to the variables

v and ui, i V J. Then, Vq(u*,v') will have the structure

~B I'

where A, B are suitable submatrices of VF(u*, v*) and I is the (r+ t - s) x (r+t - s) identity

matrix. Each one of thee rows of matrix A is a vector of the form (u(*, v 5),..., (U v)),
i E J, and these vectors are linearly independent by construction. Thus det(Vq(u*, v*)) =

det(A) 6 0. The result then follows from the inverse function theorem [S 65, page 351.
Q.E.D.

Theorem A.I Let Q be an open subset of Rr. Let F : Q 1-t R' be a continuously differen-

tiable mapping such that

max rank (VF(z)) = a. (A.2)
aEQ

Suppose that f : Q - R is a continuously differentiable function with the property

Vf(z) E span {VF(z)}, Vz E Q.

Then, there exists some continuously differentiable function h such that f(z) = h (F(z)) for

all z E R, where R is some open subset of Q.

Proof: Suppose that z* E Q is a vector at which the maximum in Eq. (A.2) is attained.
By taking t = 0 and dropping the set V, we see that all the assumptions of Lemma A.1
are satisfied", and thus Lemma A.1 applies. Let R, S and g be as in Lemma A.1. By

assumption, Vf(z) E span {VF(z)), Vz E R. Thus, for every z E R, there exists a vector

d(z) E N' such that
Vf(z) = VF(z)d(z), Vz E R. (A.3)

Using Lemma A.1, we have

F(z) = F (g(F(z),Il(z))), Vz E R,

or

u =F(g(u,v)), V(u,v) E S. (A.4)

Let V,9 be the (r - a) x r matrix of the partial derivatives of g, with respect to the
components of v. Since the left hand side of Eq. (A.4) does not depend on v, the chain rule

yields
0 = V1 g(u,v). VF(g(u,v)), V(u,v) E S. (A.5)

'We have asumed that r > e here. The proof for the case r = a is essentialy the same except that n is
redundant.
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We use Lemia A.1 once more to obtain

f(z) = f(9(F(z),fI(z))), Vz ER.

We define a function A: S '-. R by letting

h(u,v) = f(g(u,v)), V(u,v) E S. (A.6)

Notice that h is continuously differentiable. Using the chain rule,

V,h(U,V) =V,,g(u,v) Vf(g(u,v)), V(u,v) ES,

where Vh(u, v) is the vector of partial derivatives of h with respect to the components of
v. Using (A.3) and (A.5), we conclude that Vvh(u,v) = 0, for all (u,v) E S. Since S is
open and connected, it is easily shown that h is independent of v and there exists a function
h : V -+ R such that

=(uv)=h(u), V(uv)ES.

Here V = F(R) which is obviously open and connected. For any z E R, we have

f(z) = f (g(F(z), r(z))) = (F(z),fl(z)) = h(F(z)),

as desired. Q.E.D.

Theorem A.2 Let F Q - VV be continuously differentiable, where Q c N' is open. We
assume that rank(VF(z)) < s, Vz E Q, and that VFI(z) (the gradient of the first component
of F) is not identically equal to zero on the set Q. Then, there exists some positive integer
i and some continuously differentiable function g such that

Fi,(z) = g (FI(z),..., F(z)), Vz E R,

where R is some nonempty open subset of Q and F denotes the i-th component mapping of
F.

Proof: We let i be the largest index such that there exists some i E Q with the property

dim span{VF 1 (!),..., VF(i)} = i.

Clearly, 1 <i < s. By continuity, there exists some open subset 0 of Q containing I such
that VFz(z),... ,VF(z) are linearly independent for all z E 0. By our choice of the index

i, we have
VF,+1 (z) E span{VF(z),...,VF(z)}, Vz EQ.

By Theorem A.1, we see that there exists a continuously differentiable function h : U '-4 V
such that

F,+(z) =h(Fi(z),...,F(z)), Vz E R

where R is some open subset of Q and U = F(R). Q.E.D.
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Theorem A.3 Let F : U x V .-* *8 be a continuously differentiable mapping, where U
and V are open subsets of R" and 8t respectively. Let (u*,v*) E U x V be such that

rank[VuF(u*, v)] = 8 and F(u*,v*) = 0. Then, there exist some nonempty open sets

W c U, V C V such that u* E W, v E V and

( uI F(u,v) = 0 }flw
is nonempty and connected for ally E V. Furthermore, if {vi E V;i = 1,2,...} is a sequence

of vectors such that lirrn-.o vi = v and v E V, then there exists a sequence {UJ E W} such

that F(ui, v1) = 0 and liri_.n U = u for some u E W.

Proof: We are in a situation where the assumptions of Lemma A.1 hold5 . Let q, g, R, S

be given as in Lemma A.l. Thus, (u, v) = g(q(u, v)) = g(F(u, v), 11(u), v), for all (u, v) E R.

Let g,, g, be the corresponding component mappings of g such that u = gu(q(u, v)) and
v = g.(q(u,v)). Since S is open, we can take a connected open subset of S of the form

W, x W2 xV such that W, C W, W2 c '*-' and q(u*,v*) E W1 x W2 xV. It is easy to

check that W 2 is nonempty and connected and that v" E V. Since g is a diffeomorphism, it

follows that the set g(W 1 x W 2 x V) is open. Moreover, we claim that g has the following

properties:

(1) g.,,,W2,V) = v, for all (wl, w2,V) E W1 x W 2 x V;

(2) n (g.,(w 1 , W2 , v)) = W2 , for all (w1, W2 , v) E W1 x W 2 x V.

To prove the first property, let us write (wI, w2 , v) = q(u, v') for some (u, v') E R. This
is possible since (wl, w2, v) E S. Hence, (wI, w2 , v) = (F(u, v), f(u), v'). It follows that
v = v' and (wI,w 2 ,v) = q(u, v). Thus, gv(Wl,w2,v) = gv(q(u, v)) = v, which proves (1).

We now show the second property. As we have just seen, there exists some u such that
(w 1 ,W2 ,v) = q(u,v) and (u,v) E R. Thus, (w 1, w2 , v) = (F(u,v),fl(u),v), from which

follows that w2 = n(u). On the other hand, we have

rl(g,(w1 ,w2, v))= fl(go(q(u,v)))= ri(u),

from which follows that w2 = 1(g.(wl,w2,v)).

Now let W = 9.(W, x W2 x V) and S(v) = E E U I F(u,v) = 0 ). Since W is the

projection of the open set g(W 1 x W 2 x V), it follows that W is open in W. Also, it can be
easily seen that W C U and u* E W. Furthermore, we claim that

s.(v)flW = {9(0,W2 ,V) I 2 EW 2 ),Vv E V. (A.7)

aHere we have assumed that r > e. The same argument works for the cae r = s except that II should
be dropped in the remaining proof.
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In fact, let us fix some v E V and let E(v) be the set in the right-hand side of Eq. (A.7).

We will show that E(v) c sg(v)nW. Clearly, E(v) c W. Thus, we only need to show
that E(v) C Su(v). Let u be an element of E(v). Then, there exists some w2 E W 2

such that u = gu(O,w2,v). Since q(u*,v*) = (F(u*,v*),l(u*),v*) = (0,II(u*),v*) and

q(u*,v*) E W 1 x W 2 x V, we see that 0 E W1 . Thus, (0,w 2 ,v) E W 1 x W 2 x V. In light of

property (1), we see that V = g.(0,w2, v). Consequently,

F(u,v ) = F (gu(0, W2 , V),g (0,w 2, V)) = F(g(O, w 2, V)) = 0.

It follows that E(v) c Su(v) nfW.

For the reverse inclusion, given any u E S,(v) nW, we have F(u, v) = 0. Furthermore,
there exists some (WI, W2, v') E W1 x W2 X V such that u = gu(wI, w 2, V). By property

(2), we see that f7(u) = w2. Thus, (0, w2,v) = (F(u,v),fl(u),v) = q(uv). Hence, u =

gu(q(u, v)) = gu(0, w2, v). This implies that u E E(v), and Eq. (A.7) has been established.
As a result, the set Su(v)nW is connected because, according to (A.7), it is the image of
the connected set W 2 under a continuous mapping. Since E(v) is nonempty for each v E 7,
Eq. (A.7) also shows that Su(v) fW is nonempty.

Given a sequence of vectors {vi E V; i = 1,2,.. .} such that lin-.so vi = v and v E V,

let us pick ui = gu(0, w2,vi), i = 1,2,..., where W2 is some fixed vector in W. Hence,

uj E E(vi), for all i. According to Eq. (A.7), we see that F(ui,vi) = 0. Furthermore, by
the continuity of gu, we see that

liM ui = lim gu(0, w2, vi) = gu(0, w2, v),
I-400 1-00O

which is clearly in W. Q.E.D.

Theorem A.4 Let Q be an open set in Rt. Let also F : Q .-* R' be a continuously

differentiable mapping such that

rank (VF(z)) = s, Vz E A, (A.8)

where A = { z F(z) = 0 }. Suppose that f : q IN & is continuously differentiable and is a

constant function on A. Then,

Vf(z) E span {VF(z)}, V E A. (A.9)

Proof: Consider the following constrained optimization problem:
mi f(z). (A.10)

By assumption, each z in A is an optimal solution to (A.10). Since the regularity condition

(Eq. (A.8)) ensures the existence of a set of Lagrange multipliers, the necessary condition

for optimality gives the desired result ([L 84, page 300]). Q.E.D.

18



References

[A 80] Abelson, H., "Lower Bounds on Information Transfer in Distributed Computa-
tions", Journal of the ACM, 27, 2, 1980, pp. 384-392.

[AU 83] Aho, A.V., Ullman, J.D., and Yannakakis, M., "On Notions of Information Trans-
fer in VLSI Circuits", Proceedings of the 15th STOC, 1983, pp. 133-139.

[BT 89] Bertsekas, D.P. and Tsitsiklis, J.N., Parallel and Distributed Computation: Nu-
merical Methods, Prentice-Hall, 1989.

IL 84] Luenberger, D.G., Linear and Nonlinear Programming, Addison-Wesley Publish-
ing Company, 1984.

IL 89] Luo, Z.Q., Communication Complexity of Some Problems in Distributed Compu-
tation, Ph.D. Thesis, Operations Research Center, MIT, Cambridge, Mass., in
preparation, 1989.

[LT 89) Luo, Z.Q. and Tsitsiklis, J.N., "On the Communication Complexity of Distributed
Algebraic Computaion", technical report LIDS-P-1851, Lab. for Information and
Decision Systems, MIT, Cambridge, Mass., submitted to the Journal of ACM,
1989.

[MS 82] Mehlhorn, K. and Schmidt, E.M., "Las Vegas is Better than Determinism in VLSI
and Distributed Computing", Proceedings of the 14th STOC, 1982, pp. 330-337.

[PE 86] Pang, K.F. and El Gamal, A., "Communication Complexity of Computing the
Hamming Distance", SIAM Journal on Computing, 15,4, 1986, pp. 932-947.

[PS 82] Papadimitriou, C.H. and Sipser, M., "Communication Complexity", Proceedings
of the 14th STOC, 1982, pp. 196-200.

[PT 82] Papadimitriou, C.H. and Tsitsiklis, J.N., "On the Complexity of Designing Dis-

tributed Protocols", Information and Control, 53, 3, 1982, pp. 211-218.

[S 65] Spivak, M. Calculw on Manifolds, Benjamin, New York, 1965.

[TL 87] Tsituiklis, J.N. and Luo, Z.Q., 'Communication Complexity of Convex Optimiza-
tion', Journal of Complexity, Vol. 3, pp. 231-243, 1987.

[U 84] Ullman, J.D., Computational Aspects of VLSI, Computer Science Press, 1984.

(Y 79] Yao, A.C., "Some Complexity Questions Related to Distributed Computing", Pro-
ceedings of the 11th STOC, 1979, pp. 209-213.

19


